RECONSTRUCTION OF THE SHAPE OF A SOLID
.OF REVOLUTION FROM A GIVEN VELOCITY
DISTRIBUTION OF A FLOW ALONG ITS SURFACE

L. G. Guzevskii UDC 532.6 + 532,528

We consider the problem of finding the shape of a solid of revolution, given the magnitude of
a flow velocity on it as a function of arc length along the generatrix. The flow is assumed to

- be rotationless, steady-state, and axially symmetric, and the fluid is assumed to be ideal
and incompressible, The problem is solved in an exact, nonlinear formulation. In contrast
with the work of Kiselev [1] and Eterman [2] the proposed method enables us to get a solution
to any given degree of accuracy. _ ‘

In an axially symmetric, rotationless flow the Stokes stream function ¥(x, r) satisfies the equation

#Y | Y 1 9Y

ox? ar roor

where x and r are cylindrical coordinates,

The stream function is defined up to an arbitrary constant, The constant is chosen from the condi-
tion that ¥ go to zero along the unknown boundary of the solid, the equation of this boundary being r = p(s),
0 =s =< L, where s is the arc length along the generatrix.

The given form of the magnitude of the flow velocity at the solid as a function of the arc length,

V=g, V(s), 0 <s<< L 1)

serves as an additional condition determining p(s)., Here v_ is the magnitude of the unperturbed flow veloc-
ity.

It should be noted that the problem is not solvable for any dependence V(s). A necessary condition
that the problem be solvable is that max v(s) > v, . For a proof of this fact we consider in addition to the
basic flow a uniform flow with velocity v = v, outside a cylindrical tube of infinite length and diameter equal
to the maximum dimension of the solid, By construction, the domain of the basic flow includes the domain
of the auxiliary flow, Hence, for these flows all the conditions of the Lavrent'ev comparison theorem [3] are
satisfied, from which it follows that at the points of contact of the boundary streamlines the velocity of the
basic flow is greater than the velocity of the auxiliary flow. Thus, at the boundary of the initial flow there
is a point with arc length s = s, for which v(s«) > v.

We represent the initial flow as the result of imposing a uniform flow with velocity v, on a system of
vortex rings of line intensity y(s), continuously distributed along the boundary of the obstructing solid. The
stream function in this case is of the form [4]

¥(z,r) = vzw _éjgy(s)cos?——m)dw’ @)
o
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where dw = p(s)dsdy is the surface element of the surface Q; R = w/(x - .5)2 + 1%+ p2 — 2rp cos(f —¢). Be-
cause of the axial symmetry we set 6 = 0. Using the fact that {4]
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where K{}) and E(}) are the complete elliptical integrals of the first and second kinds with modulus A =
2\/rp[x — 5)2 + (r + p)Q]_i, we obtain from (2) the following representation of the stream function:
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Keeping in mind that the line intensity y(s) of the vortex layer is equal to the magnitude of the flow
velocity at the surface of the solid [5], from the condition ¥(¢, p) = 0 at the boundary we obtain the following
integrodifferential equation for p(s):

H 9 )2 —2E (M) do = Alpj,
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where

E(s) = | VT —(@pldo)t do. ()
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A=A(6,9 =2}/ 501 ()/5(0.5),
W0.9=V E0) = EOF + [p0)+p() I

We have gone to dimensionless variables in this equation. As a characteristic linear dimenion and a char-
acteristic velocity we tfake the overall length L of the generatrix of the solid and the velocity v,, of the
unperturbed flow, respectively,

We represent the unknown function p (s) as a third-order spline, The coefficients of the cubic poly~-
nomial at each interval [sg, syp+¢] (k= 0, 1,..., n—1) are determined from the continuity of the function
and its first two derivatives at the nodal points [6, 7).

The integrodifferential equation (3) is solved by the method of successive approximation. As the
zeroth approximation we can take p'"(s) = s(1—s). The value pi{ = p(i)(sk) of the unknown function at the
nodal pints s at the first step of the iteration process is found from Eq, (3)

pI{z =4 [p(m] $=S5p.

After the parameters p1 (k=1,2,..., n —1) are found, the problem is solved by interpolating the function
p{()(s) with the aid of thé cubic spline. The function ¢ = ¢(1) (s) is also represented as a third-order spline.
The quantities gi{ = 5(1)(sk) are found from Eq. (4).

The subsequent approximations are constructed in a completely analogous manner, and the iteration
process is continuved until the condition

n—i .
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is met,

' The accuracy is monitored by solving the direct problem of flow around the obtained solid of revolu-
tion and then comparing the so-obtained velocity distribution along its boundary with the initial dependence
(1). The required accuracy of the calculations is achieved by increasing the number of nodal points,

In the numerical calculations the logarithmic singularity of the integrand in Eq. (3) at ¢ = s is sep-
arated out,

413



TABLE 1

P =53 YV(c) (6,5 [(2—A) F (1) — 2B (W) do —

Pex . fnum fex Spam

1
0,00836 0,00841 | 0,01558 | 0,01567
08710 048719 | 0.06079 | 006070 - ( V{0)7(0,5)(2 — A*)Injo — s/ doy,
0.25752. 025756 | 0.13121 | 0.13119 0
0.30273 0.30274 | 0.21995 | 0.2199%
0,31831 031830 | 0.31831 | 031831

where F(A) = K(») + In|¢o=s| has no singularities on the
interval [0.1].

The improper integrals are computed by Gaussian quadrature, When infegrating a function with log-
arithmic singularity the Gaussian quadrature formula is used with weight g(u) =1Inu

{ 10
Sj(u) Inudy = — 2 Ayf (ug)-
] =1

A table of the nodes uy and coefficients Ay is given by Krylov and Pal'tsev [8].

For the complete elliptical integrals we use the approximate equations

4
K(h):lné—%lnp(c,s)——ln[o—s]%— >t (ax — balnm);
b=t

4
E@3)=1+ kgi 1% (cx — dr ln 1),

where

Nl —2 p(.s) = {[E(G)—E(s)]z_:_{0(0)—9(3)]2]"

12 (0, s) o—zs C—s

and the numerical values of the parameters ay, b, ¢, and dk k=1,2,3, 4) are given by Dymarskii et
al, [9]. The maximum error in these representations is less than 1.5°107°

As an example let us consider a velocity of the form
V(s) = + sinsm.

This velocity distribution is realized in the flow about a sphere [4]. Thus, the exact solution of the prob-
lem is of the form

g(sy= % sinsm,
E(s) = = (1 — cos sm).

An approximate solution was obtained for n = 10 and & = 0,0001, The computation time on a BESM-6 com-
puter was less than 1 min., In Table 1 we compare the approximate and exact solutions at equidistant
points s (k=1, 2, 3, 4, 5), Thus, the maximum deviation of the approximate solution from the exact solu-
tion is less than 0.0001 of the length of the generatrix I.

LITERATURE CITED

1. 0. M. Kiselev, "Construction of a solid of revolution from a given velocity distribution on the solid,"
Izv, Vyssh, Uchebn, Zaved., Aviatsion, Tekh,, No. 2 (1959).

2, I. L. I'Eterman, "Determining the surface of a solid of revolution from a given pressure distribution,”
Dokl, Akad. Nauk SSSR, 56, No. 4 (1947).

3. G. Birkhoff and E. H. Za}_antonello, Jets, Wakes, and Cavities, Academic Press (1957).

4, N. E. Kochin, I. A, Kibel', and N, V. Roze, Theoretical Hydrodynamics, Part 1 [in Russian], Fizmatgiz,
Moscow (1963).,

414



0. P. Sidorov, "Solution to the problem of flow about a solid of revolution,” Tru. Khark. Aviats, Inst., .
No. 38 (1958),

J. H. Ahlberg,E. N, Nilson, and J. L, Walsh, Theory of Splines and Their Applications, Academic
Press (1967).

Yu. I, Mikhalevich and O. K. Omel'chenko, "Routines for piecewise-polynomial interpolation of func-
tions of one and two variables," in: Standard Programs and Routines [in Russian}, No.11,1zd. Vychisl,
Tsentro., Sibirsk. Otd., Akad. Nauk SSSR (1970).

V. 1. Krylov and A, A, Pal'tsev, Tables for Numerical Integration of Functions with Logarithmic and
Algebraic Singularities [in Russian], Nauka i{ Tekhnika, Minsk (1967),

Ya. S. Dymarskii, N. N, Lozinskii, A, T. Matushkin, V. Ya. Rozenberg, and V. R, Erglis, Programer's
Reference Manual {in Russianj, Vol, 1, Leningrad (1963).

415



